

ECSE 6700 – Computer Hardware Design

Lab 1 Report –Cache Coherence

Paul Nieves (RIN: 61999083)

Professor Liu Liu, Linsen Ma

February 26 2025

Table of Contents
Module Organization/Design Overview .. 3

Description of Cache Components and Basic Operations ... 3

Top Module ... 3

Direct Mapped L1 Cache Implementation Consideration ... 4

RAM Module ... 4

Cache Controller Module .. 4

Set Associative Cache Module (L2) ... 5

Overview ... 5

Interface and External Connectivity .. 5

Cache Wrapper Module .. 5

Arbiter Module .. 5

Test Cases and Simulation Results .. 6

Test vector ... 6

Simulation waveforms ... 8

RTL Viewer schematics .. 10

Module Organization/Design Overview

The design implements a multi-core cache coherence system using the MESI protocol. It consists

of five primary submodules: the RAM module, cache controller, set-associative cache, cache wrapper,

and arbiter. Each processor core interfaces with its own cache module, which communicates with shared

memory (RAM) and other caches via a common bus. The arbiter manages bus access requests to resolve

conflicts between cores. The system ensures data consistency across caches through snooping and state

transitions (Invalid, Shared, Exclusive, Modified).

Figure 1 illustrates the top-level architecture, where multiple caches connect to a shared bus and

RAM. The cache controller orchestrates MESI state transitions, while the arbiter prioritizes bus requests.

Data and control signals flow between the caches, RAM, and processors to maintain coherence.

Figure 1: Top Module Cache Coherence Multi Core Diagram Overview

Description of Cache Components and Basic Operations

Top Module
The Top module serves as the primary integration point for the entire cache coherence system. It

orchestrates the interaction between four cache instances (referred to as PrivC1 through PrivC4) and

connects them to a shared bus, which in turn interfaces with the main memory and arbitration logic.

Parameterized by the address width (32 bits) and additional cache-related parameters, the module

establishes uniform addressing across the system. It instantiates four CacheWapperL1 modules, each

corresponding to a distinct CPU-to-cache interface. These instances handle individual read and write

requests from separate CPU cores. In addition to relaying these operations, the Top module combines

and routes shared signals—such as bus requests, snoop signals, and invalidation acknowledgments—

from all caches. It further instantiates the Arbiter module to resolve bus access conflicts and the RAM

module to serve as the primary memory, ensuring that data coherency is maintained system-wide.

Direct Mapped L1 Cache Implementation Consideration

It is important to note that a direct mapped L1 cache has not been implemented in this design.

Instead, the current design employs a set-associative cache for L2, which offers multiple ways per set and

more flexible replacement options. However, implementing a direct mapped L1 cache would be

straightforward. Essentially, you could modify the existing setAssociativiteCache module by reducing the

associativity to one, thereby eliminating the need for complex pseudo-LRU replacement logic. Once this

module is adapted to be direct mapped, it could be connected inside the Cache Wrapper module in

series with the set-associative version. The MESI protocol, which is already managing coherence across

caches, would continue to handle state transitions and ensure that the correct data is delivered to the

CPU, regardless of which cache holds it. This approach confirms that when wanting to add a direct

mapped; the design requires minimal modifications while maintaining robust cache coherence.

RAM Module
The RAM module acts as the central memory unit in the system, storing data in 128-bit blocks. It

is designed to initialize from an external file if provided, or it can initialize its memory array to zeros

based on a configurable parameter. This module features a tri-state buffer that controls when data is

driven onto the shared bus, ensuring that the memory output does not interfere with other components

unless explicitly permitted. During a write operation, the RAM module captures data from the bus and

updates its internal memory array at the address specified by the cache. In read operations, after a brief

delay to simulate realistic memory access times, the module outputs the requested data onto the bus.

The RAM module also monitors an abort signal, which helps it gracefully handle scenarios where

ongoing cache operations necessitate cancellation of a memory access. Overall, its design guarantees

that memory operations—both read and write—are conducted reliably in a multi-core environment.

Cache Controller Module
The L2CacheController module implements the heart of the cache coherence logic by managing

both the pseudo-LRU replacement mechanism and the MESI state machine. Its design is built on precise

bit-level manipulation of addresses, using defined constants to extract index, tag, and block offset values

for each cache line. For processor transactions, the module isolates the relevant address segments and

processes requests to update the MESI state from Invalid, Shared, or Exclusive to Modified as needed. In

doing so, it determines whether a read operation should leave the block in Exclusive or Shared mode

based on whether the block is already held in a shared state. For snooping operations—triggered by bus

transactions such as BusRd, BusRdX, or Invalidate—the controller similarly adjusts the MESI state of a

cache line. The module utilizes a combination of always blocks with case statements to deduce the next

MESI state for both processor and snoop paths.

Additionally, the controller incorporates a pseudo-LRU algorithm for cache replacement. It

maintains an internal LRU structure for each set, updating this state based on which cache line (or

“way”) is accessed. Using combinational logic, the module evaluates the current LRU state and selects

the appropriate cache line for replacement on a miss. The logic is carefully structured to update the

internal LRU registers based on the accessed block, ensuring that the most appropriate candidate is

evicted when needed. By blending the intricacies of both the LRU replacement policy and the MESI state

machine, the L1CacheController module plays a critical role in maintaining high-performance and

coherent cache operations across the system.

Set Associative Cache Module (L2)

Overview
The setAssociativiteCache module is a key component of a 4-way set-associative cache system that

implements coherent cache operations using the MESI protocol. It is parameterized by constants such as

SET_SIZE, ASSOCIATIVITY, ADDRESSSIZE, and MESI_SIZE, which define the cache’s structure—including

the number of sets, the number of ways per set, and the bit-widths for addressing and state fields. This

module interacts with both the processor and a shared common bus, ensuring that data is stored,

retrieved, and updated in accordance with cache coherence rules.

Interface and External Connectivity
The module’s interface is designed to handle requests from the processor and to communicate with

other caches and memory via a common bus. It accepts processor read and write commands, along with

a 32-bit address that is divided into tag, index, and block offset fields using pre-defined macros. Data

exchange occurs on an inout Data_Bus, and a CPU_stall signal is asserted when the processor must

wait—typically during a cache miss or when a memory transaction is in progress. In addition to its

processor-facing ports, the module drives a set of common bus signals such as Address_Com,

Data_Bus_Com, BusRd, BusRdX, Invalidate, and Data_in_Bus, which are crucial for bus arbitration and

for handling snoop requests from other processors.

Cache Wrapper Module
The Cache Wrapper module acts as a top-level wrapper for the L1/L2 cache subsystem. It

integrates both the set-associative cache memory and the cache controller to create a cohesive unit that

manages processor accesses, bus transactions, and coherence protocols. This module receives read and

write commands (PrRd and PrWr) along with a full 32-bit address, which it then partitions into its

constituent fields (tag, index, and block offset) according to the defined constants. Internally, the module

instantiates a dedicated set-associative cache component that leverages a pseudo–Least Recently Used

(LRU) replacement policy, ensuring that on a cache miss, the least-used block is replaced efficiently. In

parallel, it instantiates the L2CacheController, which orchestrates the MESI protocol state transitions for

both processor and snoop requests. Together, these submodules support coherent operations over a

shared bus, handling signals such as bus requests, snooping (BusRd, BusRdX, Invalidate), and memory

write-back indications. The Cache Wrapper module thereby abstracts the lower-level cache memory

operations while interfacing with the wider cache coherence network, ensuring that data remains

consistent across multiple cores.

Arbiter Module
The Arbiter module is dedicated to managing access to the shared bus, ensuring orderly

communication between multiple cache modules and the memory subsystem. It receives separate

request signals from both the processor side (via the Cache Wrapper modules) and the snooping side,

where cache coherence transactions are handled. Using a priority-based scheme, the Arbiter assigns bus

grants based on the order of the request signals; the lowest-numbered request is given the highest

priority, which ensures a deterministic resolution when several caches request bus access

simultaneously. This mechanism not only helps in coordinating processor and snoop transactions but

also manages the memory snoop grant signal. By quickly resolving contentions, the Arbiter facilitates

efficient invalidations and write-back operations, which are crucial for maintaining data consistency

across the cache hierarchy.

Test Cases and Simulation Results

Test vector
The coherence system was validated through a series of test cases. Simulation test vectors cover

various scenarios, such as a write by Cache 1 that transitions its state from Invalid to Modified, followed

by a write by Cache 2 that forces an invalidation of Cache 1’s block. Subsequent read operations illustrate

further state transitions: Cache 1 transitions to Exclusive mode after reading data fetched from Cache 2,

and Cache 3’s read operation results in a shared state across multiple caches. Waveform diagrams from

the simulations confirm that the MESI protocol is correctly implemented, demonstrating proper bus

transactions and state transitions that ensure data consistency across the caches.

// Format (101-bit binary per line):

// [100:99] cache_sel [98] R [97] W [96:65] address [64:33] data_in [32:1] expected_data [0]

expected_ready

// Test Sequence:

// 1. Write 0xCAFEBABE to Cache1 @ 0x00000004

// 2. Write 0xDEADBEEF to Cache2 @ 0x00000004

// 3. Read from Cache1 @ 0x00000004 (expect 0xDEADBEEF)

// 4. Read from Cache2 @ 0x00000004 (expect 0xDEADBEEF)

// 5. Read from Cache3 @ 0x00000004 (expect 0xDEADBEEF)

// Write to Cache1 (Vector 0)

00_0_1_00000000000000000000000000000100_11001010111111101011101010111110_00000000000

000000000000000000000_1

// Write to Cache2 (Vector 1)

01_0_1_00000000000000000000000000000100_11011110101011011011111011101111_00000000000

000000000000000000000_1

// Read from Cache1 (Vector 1)

00_1_0_00000000000000000000000000000100_00000000000000000000000000000000_11011110101

011011011111011101111_1

// Read from Cache2 (Vector 1)

01_1_0_00000000000000000000000000000100_00000000000000000000000000000000_11011110101

011011011111011101111_1

// Read from Cache3 (Vector 1)

10_1_0_00000000000000000000000000000100_00000000000000000000000000000000_11011110101

011011011111011101111_1

Figure 2: Test Vector (CPU_Instructions.tv)

Cache
Depth

Cache Memory Initialization (32 bits) RAM Memory Initialization (128 bits)

0 128’b0000…..0000; 128’b000000000000000…..0000;

1 128’b0000…..0000; 128’b000000000000000…..0000;

…. ….. ….

64 128’b0000…..0000; 128’b000000000000000…..0000;

Table 1: Memory Data Initialization

Test
Vector

Tag =
address
[25:0]

(in
decimal)

MESI Transition
Diagram
(INVALID = 00,
SHARED = 01,
EXCLUSIVE =10,
MODIFIED = 11) (in
binary)
(cache_proc_contr[
4])

Offset =
adress[1:0],
Index=
address[5:2]

(in decimal)

CPU to
Cache Data
in/out =
Data_Bus
[31:0] (hex)

Cache1
Memory
After Op
(cache_var
[4])

Cache2
Memory
After Op
(cache_var
[4])

Cache3
Memory
After Op
(cache_var
[4])

0 (Write Op
Cache 1)

0 Cache 1:
INVALID->
MODIFIED

0,1 CAFEBABE CAFEBABE
00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

1 (Write Op
Cache 2)

0 Cache 1:
MODIFIED->
INVALID
Cache 2:
INVALID->
MODIFIED

0,1 DEADBEEF CAFEBABE
00000000
00000000
00000000

DEADBEEF
00000000
00000000
00000000

00000000
00000000
00000000
00000000

2 (Read Op
Cache 1)

0 Cache 1:
INVALID ->
EXCLUSIVE

0,1 DEADBEEF DEADBEEF
00000000
00000000
00000000

DEADBEEF
00000000
00000000
00000000

00000000
00000000
00000000
00000000

3 (Read Op
Cache 2)

0 No Transitions
(Cache 2 Stays in
modified)

0,1 DEADBEEF DEADBEEF
00000000
00000000
00000000

DEADBEEF
00000000
00000000
00000000

00000000
00000000
00000000
00000000

4 (Read Op
Cache 3)

0 Cache 1:
EXCLUSIVE ->
SHARED
Cache 3:
INVALID ->
SHARED

0,1 DEADBEEF DEADBEEF
00000000
00000000
00000000

DEADBEEF
00000000
00000000
00000000

DEADBEEF
00000000
00000000
00000000

Table 1: Expected Outputs for Test Vectors

Simulation waveforms

Figure 3: Simulation with Testbench Using Test Vectors Part 1 (CPU_Instructions.tv)

Figure 4: Simulation with Testbench Using Test Vectors Part 2 (CPU_Instructions.tv)

Figure 5: Simulation with Testbench Using Test Vectors Part 3 (CPU_Instructions.tv)

Figure 6: Simulation with Testbench Using Test Vectors Part 4 (CPU_Instructions.tv)

Figure 6: Simulation with Testbench Using Test Vectors Part 5 (CPU_Instructions.tv)

RTL Viewer schematics

Figure 7: Block Diagram from RTL Viewer (Top Module for Cache Coherence Multi Core)

Figure 8: Block Diagram from RTL Viewer (Cache Wrapper)

Figure 9: Block Diagram from RTL Viewer (Cache Controller)

Figure 10: Block Diagram from RTL Viewer (Arbiter)

