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Module Organization/Design Overview 

The design implements a multi-core cache coherence system using the MESI protocol. It consists 

of five primary submodules: the RAM module, cache controller, set-associative cache, cache wrapper, 

and arbiter. Each processor core interfaces with its own cache module, which communicates with shared 

memory (RAM) and other caches via a common bus. The arbiter manages bus access requests to resolve 

conflicts between cores. The system ensures data consistency across caches through snooping and state 

transitions (Invalid, Shared, Exclusive, Modified). 

Figure 1 illustrates the top-level architecture, where multiple caches connect to a shared bus and 

RAM. The cache controller orchestrates MESI state transitions, while the arbiter prioritizes bus requests. 

Data and control signals flow between the caches, RAM, and processors to maintain coherence. 

 

Figure 1: Top Module Cache Coherence Multi Core Diagram Overview 

Description of Cache Components and Basic Operations 

Top Module 
The Top module serves as the primary integration point for the entire cache coherence system. It 

orchestrates the interaction between four cache instances (referred to as PrivC1 through PrivC4) and 

connects them to a shared bus, which in turn interfaces with the main memory and arbitration logic. 

Parameterized by the address width (32 bits) and additional cache-related parameters, the module 

establishes uniform addressing across the system. It instantiates four CacheWapperL1 modules, each 

corresponding to a distinct CPU-to-cache interface. These instances handle individual read and write 

requests from separate CPU cores. In addition to relaying these operations, the Top module combines 

and routes shared signals—such as bus requests, snoop signals, and invalidation acknowledgments—

from all caches. It further instantiates the Arbiter module to resolve bus access conflicts and the RAM 

module to serve as the primary memory, ensuring that data coherency is maintained system-wide. 

 



Direct Mapped L1 Cache Implementation Consideration 

It is important to note that a direct mapped L1 cache has not been implemented in this design. 

Instead, the current design employs a set-associative cache for L2, which offers multiple ways per set and 

more flexible replacement options. However, implementing a direct mapped L1 cache would be 

straightforward. Essentially, you could modify the existing setAssociativiteCache module by reducing the 

associativity to one, thereby eliminating the need for complex pseudo-LRU replacement logic. Once this 

module is adapted to be direct mapped, it could be connected inside the Cache Wrapper module in 

series with the set-associative version. The MESI protocol, which is already managing coherence across 

caches, would continue to handle state transitions and ensure that the correct data is delivered to the 

CPU, regardless of which cache holds it. This approach confirms that when wanting to add a direct 

mapped; the design requires minimal modifications while maintaining robust cache coherence. 

RAM Module 
The RAM module acts as the central memory unit in the system, storing data in 128-bit blocks. It 

is designed to initialize from an external file if provided, or it can initialize its memory array to zeros 

based on a configurable parameter. This module features a tri-state buffer that controls when data is 

driven onto the shared bus, ensuring that the memory output does not interfere with other components 

unless explicitly permitted. During a write operation, the RAM module captures data from the bus and 

updates its internal memory array at the address specified by the cache. In read operations, after a brief 

delay to simulate realistic memory access times, the module outputs the requested data onto the bus. 

The RAM module also monitors an abort signal, which helps it gracefully handle scenarios where 

ongoing cache operations necessitate cancellation of a memory access. Overall, its design guarantees 

that memory operations—both read and write—are conducted reliably in a multi-core environment. 

Cache Controller Module 
The L2CacheController module implements the heart of the cache coherence logic by managing 

both the pseudo-LRU replacement mechanism and the MESI state machine. Its design is built on precise 

bit-level manipulation of addresses, using defined constants to extract index, tag, and block offset values 

for each cache line. For processor transactions, the module isolates the relevant address segments and 

processes requests to update the MESI state from Invalid, Shared, or Exclusive to Modified as needed. In 

doing so, it determines whether a read operation should leave the block in Exclusive or Shared mode 

based on whether the block is already held in a shared state. For snooping operations—triggered by bus 

transactions such as BusRd, BusRdX, or Invalidate—the controller similarly adjusts the MESI state of a 

cache line. The module utilizes a combination of always blocks with case statements to deduce the next 

MESI state for both processor and snoop paths. 

Additionally, the controller incorporates a pseudo-LRU algorithm for cache replacement. It 

maintains an internal LRU structure for each set, updating this state based on which cache line (or 

“way”) is accessed. Using combinational logic, the module evaluates the current LRU state and selects 

the appropriate cache line for replacement on a miss. The logic is carefully structured to update the 

internal LRU registers based on the accessed block, ensuring that the most appropriate candidate is 

evicted when needed. By blending the intricacies of both the LRU replacement policy and the MESI state 

machine, the L1CacheController module plays a critical role in maintaining high-performance and 

coherent cache operations across the system. 



Set Associative Cache Module (L2) 

Overview 
The setAssociativiteCache module is a key component of a 4-way set-associative cache system that 

implements coherent cache operations using the MESI protocol. It is parameterized by constants such as 

SET_SIZE, ASSOCIATIVITY, ADDRESSSIZE, and MESI_SIZE, which define the cache’s structure—including 

the number of sets, the number of ways per set, and the bit-widths for addressing and state fields. This 

module interacts with both the processor and a shared common bus, ensuring that data is stored, 

retrieved, and updated in accordance with cache coherence rules. 

Interface and External Connectivity 
The module’s interface is designed to handle requests from the processor and to communicate with 

other caches and memory via a common bus. It accepts processor read and write commands, along with 

a 32-bit address that is divided into tag, index, and block offset fields using pre-defined macros. Data 

exchange occurs on an inout Data_Bus, and a CPU_stall signal is asserted when the processor must 

wait—typically during a cache miss or when a memory transaction is in progress. In addition to its 

processor-facing ports, the module drives a set of common bus signals such as Address_Com, 

Data_Bus_Com, BusRd, BusRdX, Invalidate, and Data_in_Bus, which are crucial for bus arbitration and 

for handling snoop requests from other processors. 

Cache Wrapper Module 
The Cache Wrapper module acts as a top-level wrapper for the L1/L2 cache subsystem. It 

integrates both the set-associative cache memory and the cache controller to create a cohesive unit that 

manages processor accesses, bus transactions, and coherence protocols. This module receives read and 

write commands (PrRd and PrWr) along with a full 32-bit address, which it then partitions into its 

constituent fields (tag, index, and block offset) according to the defined constants. Internally, the module 

instantiates a dedicated set-associative cache component that leverages a pseudo–Least Recently Used 

(LRU) replacement policy, ensuring that on a cache miss, the least-used block is replaced efficiently. In 

parallel, it instantiates the L2CacheController, which orchestrates the MESI protocol state transitions for 

both processor and snoop requests. Together, these submodules support coherent operations over a 

shared bus, handling signals such as bus requests, snooping (BusRd, BusRdX, Invalidate), and memory 

write-back indications. The Cache Wrapper module thereby abstracts the lower-level cache memory 

operations while interfacing with the wider cache coherence network, ensuring that data remains 

consistent across multiple cores. 

Arbiter Module 
The Arbiter module is dedicated to managing access to the shared bus, ensuring orderly 

communication between multiple cache modules and the memory subsystem. It receives separate 

request signals from both the processor side (via the Cache Wrapper modules) and the snooping side, 

where cache coherence transactions are handled. Using a priority-based scheme, the Arbiter assigns bus 

grants based on the order of the request signals; the lowest-numbered request is given the highest 

priority, which ensures a deterministic resolution when several caches request bus access 

simultaneously. This mechanism not only helps in coordinating processor and snoop transactions but 

also manages the memory snoop grant signal. By quickly resolving contentions, the Arbiter facilitates 

efficient invalidations and write-back operations, which are crucial for maintaining data consistency 

across the cache hierarchy. 



Test Cases and Simulation Results 

Test vector 
The coherence system was validated through a series of test cases. Simulation test vectors cover 

various scenarios, such as a write by Cache 1 that transitions its state from Invalid to Modified, followed 

by a write by Cache 2 that forces an invalidation of Cache 1’s block. Subsequent read operations illustrate 

further state transitions: Cache 1 transitions to Exclusive mode after reading data fetched from Cache 2, 

and Cache 3’s read operation results in a shared state across multiple caches. Waveform diagrams from 

the simulations confirm that the MESI protocol is correctly implemented, demonstrating proper bus 

transactions and state transitions that ensure data consistency across the caches. 

// Format (101-bit binary per line): 

// [100:99] cache_sel [98] R [97] W [96:65] address [64:33] data_in [32:1] expected_data [0] 

expected_ready 

// Test Sequence: 

// 1. Write 0xCAFEBABE to Cache1 @ 0x00000004 

// 2. Write 0xDEADBEEF to Cache2 @ 0x00000004 

// 3. Read from Cache1 @ 0x00000004 (expect 0xDEADBEEF) 

// 4. Read from Cache2 @ 0x00000004 (expect 0xDEADBEEF) 

// 5. Read from Cache3 @ 0x00000004 (expect 0xDEADBEEF) 

// Write to Cache1 (Vector 0) 

00_0_1_00000000000000000000000000000100_11001010111111101011101010111110_00000000000

000000000000000000000_1 

// Write to Cache2 (Vector 1) 

01_0_1_00000000000000000000000000000100_11011110101011011011111011101111_00000000000

000000000000000000000_1 

// Read from Cache1 (Vector 1) 

00_1_0_00000000000000000000000000000100_00000000000000000000000000000000_11011110101

011011011111011101111_1 

// Read from Cache2 (Vector 1) 

01_1_0_00000000000000000000000000000100_00000000000000000000000000000000_11011110101

011011011111011101111_1 

// Read from Cache3 (Vector 1) 

10_1_0_00000000000000000000000000000100_00000000000000000000000000000000_11011110101

011011011111011101111_1  

Figure 2: Test Vector (CPU_Instructions.tv) 

Cache 
Depth 

Cache Memory Initialization (32 bits) RAM Memory Initialization (128 bits) 

0 128’b0000…..0000; 128’b000000000000000…..0000; 

1 128’b0000…..0000; 128’b000000000000000…..0000; 

…. ….. …. 

64 128’b0000…..0000; 128’b000000000000000…..0000; 

Table 1: Memory Data Initialization  

 

 



Test 
Vector 

Tag = 
address 
[25:0] 
 
(in 
decimal) 

MESI Transition 
Diagram 
(INVALID = 00, 
SHARED = 01, 
EXCLUSIVE =10, 
MODIFIED = 11) (in 
binary) 
(cache_proc_contr[
4]) 

Offset = 
adress[1:0], 
Index= 
address[5:2] 
 
(in decimal) 

CPU to 
Cache Data 
in/out = 
Data_Bus 
[31:0] (hex) 

Cache1 
Memory 
After Op 
(cache_var
[4]) 

Cache2 
Memory 
After Op 
(cache_var
[4]) 

Cache3 
Memory 
After Op 
(cache_var
[4]) 

0 (Write Op 
Cache 1) 

0 Cache 1: 
INVALID-> 
MODIFIED 

0,1 CAFEBABE CAFEBABE 
00000000 
00000000 
00000000 

00000000 
00000000 
00000000 
00000000 

00000000 
00000000 
00000000 
00000000 

1 (Write Op 
Cache 2) 

0 Cache 1: 
MODIFIED-> 
INVALID 
Cache 2: 
INVALID-> 
MODIFIED 

0,1 DEADBEEF CAFEBABE 
00000000 
00000000 
00000000 

DEADBEEF 
00000000 
00000000 
00000000 

00000000 
00000000 
00000000 
00000000 

2 (Read Op 
Cache 1) 

0 Cache 1: 
INVALID -> 
EXCLUSIVE 
 

0,1 DEADBEEF DEADBEEF 
00000000 
00000000 
00000000 

DEADBEEF 
00000000 
00000000 
00000000 

00000000 
00000000 
00000000 
00000000 

3 (Read Op 
Cache 2) 

0 No Transitions 
(Cache 2 Stays in 
modified) 

0,1 DEADBEEF DEADBEEF 
00000000 
00000000 
00000000 

DEADBEEF 
00000000 
00000000 
00000000 

00000000 
00000000 
00000000 
00000000 

4 (Read Op 
Cache 3) 

0 Cache 1: 
EXCLUSIVE -> 
SHARED 
Cache 3: 
INVALID ->  
SHARED 

0,1 DEADBEEF DEADBEEF 
00000000 
00000000 
00000000 

DEADBEEF 
00000000 
00000000 
00000000 

DEADBEEF 
00000000 
00000000 
00000000 

Table 1: Expected Outputs for Test Vectors 

 



Simulation waveforms 

 

Figure 3: Simulation with Testbench Using Test Vectors Part 1 (CPU_Instructions.tv) 

 

Figure 4: Simulation with Testbench Using Test Vectors Part 2 (CPU_Instructions.tv) 

 

Figure 5: Simulation with Testbench Using Test Vectors Part 3 (CPU_Instructions.tv) 



 

Figure 6: Simulation with Testbench Using Test Vectors Part 4 (CPU_Instructions.tv) 

 

Figure 6: Simulation with Testbench Using Test Vectors Part 5 (CPU_Instructions.tv) 

  



RTL Viewer schematics 
 

 

Figure 7: Block Diagram from RTL Viewer (Top Module for Cache Coherence Multi Core) 

 

Figure 8: Block Diagram from RTL Viewer (Cache Wrapper) 



 

Figure 9: Block Diagram from RTL Viewer (Cache Controller) 

 

Figure 10: Block Diagram from RTL Viewer (Arbiter) 

 


